
 

 

Runtime Checking of Multithreaded Applications with  
Visual Threads 

Jerry J. Harrow, Jr. 

Compaq Computer Corporation, Business Critical Servers Group, 
110 Spit Brook Rd, Nashua, NH, USA 

Jerry.Harrow@Compaq.com 

Abstract. Multithreaded applications are notoriously difficult to design and 
build while avoiding defects.  Many of Compaq’s customers need to employ 
threads to implement high-performance, scalable applications that address their 
needs in business and science.  In order to ensure their success using threads, 
Compaq provides a runtime debugging and analysis tool for multithreaded 
applications called Visual Threads.  This paper describes the automatic runtime 
checking for multithreaded applications incorporated in Visual Threads. 

1 Introduction 

While the performance of computer systems continues to improve at a rapid rate, 
many problems in science and business continue to outstrip the ability of a single 
processor.  This has given rise to computer systems built using Symmetric 
Multiprocessing (SMP), and programming interfaces to enable an application to enlist 
those processors.  One such programming interface standard is IEEE POSIX 
1003.1-1996, which is commonly referred to as pthreads [1].  The POSIX threads 
library enables an application to create and control additional threads of execution, 
and provides synchronization primitives to allow the threads to coordinate their work.  
Java ™ provides similar capabilities through its language syntax.  All the threads in 
an application run inside the same process and therefore share the same address space, 
terminal, and open files.  Depending upon the operating system1, the threads may be 
scheduled across the available processors, thereby enabling true concurrent execution 
of the threads. 

The challenges of threads are many.  Primary of these challenges is the increased 
program complexity caused by the need to synchronize access to shared data 
structures, the potential for timing-dependent failures, errors using the programming 
interface, and the difficulty of debugging and optimizing the application.   

—————— 
1 Compaq’s OpenVMS and Tru64™ UNIX® operating systems both provide a POSIX threads 

library implementation that enables true concurrent execution of threads on systems with 
multiple processors. 



 

 

 

 

2 Development of Visual Threads  

The genesis of Visual Threads was the observation that many of the problems 
reported by our customers in their multithreaded applications were in fact 
programming errors on their part.  The vision of the development manager for the 
threads group was that if we could help customers find these problems, it would 
greatly improve customer satisfaction, and reduce support costs.  The goal of Visual 
Threads therefore became: To help Compaq’s customers succeed with threads. 

With almost no other competitive tools available in the industry, the development 
team brainstormed to build a list of all common thread-related programming errors 
that an application may experience.  This list was then prioritized to reflect the 
relative usefulness of detecting each error to the programmer.  After weighing the 
benefits of the various types  of tools that could be built, the team decided to focus on 
automatic runtime -based checking.  The primary factors influencing this choice are 
listed below. 

 
− Can be applied to code already written 
− Provides the most capability without user input 
− Does not require buy-in to a particular design model 
− Programming-language independence 
− Addresses the widest range of errors 
− Works when not all code is available as source code 

 
With the tool paradigm selected, the team started the detailed design of what specific 
errors this runtime -based checking tool would address.  The set of analysis rules were 
chosen very pragmatically.  The team commenced to design and implement the 
largest set of runtime checking that we could reasonably expect to complete within 
the time and resource constraints of 5-6 engineers and 6-12 months design and 
implementation.  Additional analysis rules have been added in on-going releases. 

3 Visual Threads Architecture  

Visual Threads integrates many distinct technologies into a single development tool to 
hide the underlying complexity, and make it easy to use.  The primary components 
that make up Visual Threads are listed below. 

 
− Graphical User Interface implemented in Java 
− An optional connection from the user interface to the analysis engine running on a 

remote server via the Java Remote Method Invocation facility 
− Analysis engine implemented in C++ and accessed via Java native method calls  
− Shared-memory transport between analysis engine and application to be analyzed 
− A binary instrumentation tool to add analysis code into an existing application 
− A POSIX threads implementation that provides data gathering hooks 
 



 

 

 

 

These technologies and components are used together to enable a programmer to 
apply the computation power of today’s sophisticated computer systems toward 
solving their problem of producing robust, scalable, efficient code. 

 

Fig. 1. The main window of the Visual Threads user interface provides execution controls, and 
a summary of thread activity over time.  This graph is dynamically drawn in conjunction with 
the analysis of the application as it executes.   

The primary unit of data processed by Visual Threads is the event.  This data is 
provided directly from the library that implements the threads programming interface.  
A significant state change in the threads library results in an event being generated.  
This event is encoded as a small binary record and transmitted from the application 
process to Visual Threads via a shared memory ring buffer.  Visual Threads uses 
these events to model the execution of the application via a state machine.  The 
runtime checking is then applied to this state machine and any errors detected are 
reported via the user interface.  In some cases, additional events are generated by 
other analysis code that Visual Threads injects into the application executable.  In 
particular, the support for detecting race conditions on data shared between multiple 
threads without synchronization is performed by such injected code.  If violations of 
this rule are detected, events are generated describing the violation. 

4 Automatic Runtime Checking 

The heart of Visual Threads’ runtime checking is a set of rules that are applied to the 
threads-related activity in the application.  The automatic error-detection rules can be 
classified into the categories of deadlock, data protection, and other programming 
errors.  In addition to the error-detection rules, there are rule templates that allow a 
programmer to create customized rules to analyze the behavior of their particular 
application. 



 

 

 

 

 

 

Fig. 2. Rules are enabled, disabled, and created via the Rule Setup dialog.  The top section lists 
the currently defined rules in the Programming Errors category, if they are enabled, and what 
action to take when the rule is violated.  The bottom section provides templates that can be used 
to create additional rules. 

When a given rule is enabled, Visual Threads evaluates the rule condition relative to 
the thread events generated by the application.  When a rule is violated, Visual 
Threads responds with a rule action (such as stopping the application or ignoring the 
violation) and provides the necessary data to help diagnose the error in the 
application.  Consider the following naïve implementation of Dykstra’s classic dining 
philosophers problem [2].  

#include <pthread.h> 

pthread_t philosopher[5]; 
pthread_mutex_t chopstick[5]; 

void *dine(void *arg) { 
    long left = (long) arg; 
    long right = (left + 1) % 5; 
    while (1) { 
        pthread_mutex_lock(&chopstick[left]); 
        pthread_mutex_lock(&chopstick[right]); 
        // Eating... 
        pthread_mutex_unlock(&chopstick[left]); 
        pthread_mutex_unlock(&chopstick[right]); 
        sleep(1); 
    } 
} 



 

 

 

 

void main() { 
    // Create chopsticks 
    for (int c = 0; c < 5; c++) 
        pthread_mutex_init(&chopstick[c], NULL); 

    // Create philosophers 
    for (int p = 0; p < 5; p++) 
        pthread_create(&philosopher[p], NULL,  
                       &dine, (void *)p); 
    sleep(100); 
} 

When executed under Visual Threads, the following alarm is generated. 

 

Fig. 3. This alarm reports the detection of an inconsistent lock hierarchy during the execution 
of the program.  The white center area of the dialog is dedicated to describing the actions of the 
program that violate the inconsistentOrder  rule.  Each line in the tables displayed depicts an 
action in the program, and provides access to more information about each philosopher 
(thread), chopstick (mutex), the callstack, and the location in the source where the action 
occurred. 

The entire Visual Threads system is targeted for efficient analysis of running 
programs.  Under the default configuration all rules except those dealing with data 
protection are enabled.  Each class of rules are described in the following sections. 



 

 

 

 

4.1 Deadlock-Related Rules  

The problem of deadlock is common in parallel programming.  Deadlock can occur 
whenever multiple shared resources are required to accomplish a task. If not done 
correctly, two threads may end up each holding one resource but waiting for a second 
held by the other thread.  If neither releases a resource until they complete their 
respective tasks, both will wait indefinitely.  Visual Threads detects just this situation 
in the use of the POSIX threads programming interface.  The set of resources 
analyzed by Visual Threads are mutexes, read-write locks (write portion), and threads 
(join operations).  When a deadlock situation is detected, the error message provides 
all the relevant information necessary to diagnose the underlying cause of the error.  
For each thread involved in the deadlock, the location where the resource was 
acquired, and the location where the thread is waiting for the other resource is 
displayed. 
 
Explicit Deadlock.  Deadlock is a circularity in the dependency graph for the threads.  
It is detected via a simple recursive mark-search algorithm directly applied to the 
model representation of the program that Visual Threads constructs as the program 
executes.  When a thread blocks on a synchronization point, a new marker value is 
allocated.  A recursive routine is then invoked specifying the thread object and the 
marker value.  The algorithm for this routine is described in pseudo code below. 

CheckDeadlock (object, mark) { 
   // If we find current mark, then cycle detected 
   if object.mark == mark then report deadlock; 

   object.mark = mark; 
 
   for each o on which object depends 
        CheckDeadlock (o, mark); 
} 

There are two noteworthy optimizations used to keep this processing efficient.  The 
first of these is to invoke the algorithm only when a thread blocks.  This avoids 
overhead in the case when a lock is not contended (a common case).  Fortunately, the 
data collection hooks utilized by Visual Threads provide this level of detail, which is 
normally only available within the threads library implementation itself.  A second 
optimization was to eliminate the need to clear previous marks.  This was 
accomplished by always using a unique mark value on every search.  Mark values are 
simply a 32-bit integer quantity incremented for every search.  While it is 
theoretically possible for an application to be executed long enough to perform 232 

searches for deadlock, thereby causing mark values to be re-used, the probability of 
this is negligible. 
 
Potential Deadlock.  While detecting actual deadlock is useful, it is relatively 
obvious when it occurs because the application never completes.  Visual Threads goes 
beyond this, however, to detect various conditions that may lead to deadlock.  These 
are much more important to ensuring program correctness because they detect 



 

 

 

 

situations that may not typically have any visible symptoms, but at some point in the 
future may cause the application to fail.  One such rule detects when locks (mutexes 
and/or read-write locks) are acquired in an inconsistent order sometime during the 
application run.  Visual Threads does this by monitoring the lock acquisition order, 
and verifying that all future acquisitions are performed in the same order.  If the locks 
are acquired inconsistently, there is the potential for the application to deadlock.   

The algorithm for detecting inconsistent lock order maintains a set of must-not-be-
locked-before relationship pairs.  When a new lock is acquired a search is performed 
to find any existing lock order pairs involving the new lock and each of the other 
locks already held by the thread.  Note that the must-not-be-locked-before 
relationship is transitive and therefore the search function recursively follows chains 
of relationships.  If a match is found, an error is reported.  The error message (see 
Figure 3 as an example) includes each of the locations in the source code that 
contributed to the observed lock order.  If the search fails to find any inconsistencies 
with previous execution behavior, then new must-not-be-locked-before relationship 
pairs are created using the new lock and each lock currently held. 

If the application was designed based upon a lock acquisition hierarchy (i.e. a 
consistent order in which to acquire locks is part of the application definition), then 
application-specific rules can be configured that enable Visual Threads to validate 
that the lock acquisition order specified by the design is in fact honored. 
 
Priority Inversion.  Another deadlock-related rule is the detection of priority 
inversion.  Visual Threads detects high-priority threads that are waiting for a lock 
held by a low-priority thread when another medium-priority thread is currently 
executing.  This rule, along with a warning about sharing locks between threads of 
differing priorities, helps to pinpoint other programming errors that can lead to poor 
performance or more drastic failures. 

4.2 Data Protection Rules 

The most powerful Visual Threads analysis rule finds data shared between multiple 
threads without the protection afforded by a mutex, read-write lock, or atomic 
hardware instruction sequence.  In the rest of this section the generic term lock  will be 
used to refer to all of those synchronization primitives.  Unsynchronized access to 
data that is shared between multiple threads and is also modified can result in timing-
related errors such as incorrect results, or memory corruption.  The algorithm starts 
with the premise that the sharing of a read-write data item d should be governed by 
some lock l, or by the implicit synchronization of thread creation or join (a join allows 
a thread to wait for the termination of another thread).  Violations of this premise are 
reported as potential errors in the application being analyzed.  There are three 
significant facets of the algorithm used to detect and report these potential errors. 
 
− Memory-usage markings to handle initialization, and shared read data. 
− Lockset refinement to detect that a lock does not protect the data. 
− Thread segment identification to handle create/terminate synchronization 

 



 

 

 

 

Basic Algorithm.   Visual Threads data protection rules are based upon the algorithms 
and implementation of the Eraser tool.  The complete details of the underlying Eraser 
algorithm are available in a separate paper [3], but it can be summarized as follows.  
At the start of the algorithm all data is marked as NEW (see Table 1), and is protected 
by a candidate lockset  containing all the locks in the application. 

Table 1. Memory-usage Markings 

State Description 
NEW Newly allocated memory, not yet accessed, no lock sets. 
EXCLUSIVE Memory is identified as being exclusively accessed by a 

particular thread, no lock sets. 
SHARED Identifies shared, read-only data.  The set of locks in effect 

during all accesses is updated.  No errors are reported. 
SHARED-
MODIFIED 

Identifies shared, writable data.   The set of locks in effect 
during all accesses is updated.  If empty, an error is generated. 

  
To account for initialization and read-only sharing of data, error reports are deferred 
until a data address reaches the SHARED-MODIFIED state, as depicted in Figure 4.  
Once a thread modifies the data, it is associated with that thread and marked 
EXCLUSIVE.  If read or written by any other thread, the memory is then marked 
SHARED or SHARED-MODIFIED respectively.   

 
NEW EXCLUSIVE 

SHARED SHARED-
MODIFIED 

Write 
Read 

Write, 
second 
thread 
 

Write 

Read, 
        second 
        thread 

 

Fig. 4.  Checking for consistent synchronization is deferred until the memory is actually shared 
between two or more threads and is being modified.  Earlier state transitions accommodate 
memory allocated and initialized by a single thread, then shared with other threads either in a 
read-only fashion, or with synchronization. 

When the data becomes shared, the candidate lockset presumed to protect the data is 
updated.  The lockset is reduced to the intersection of the previous lockset and the set 
of locks held by the thread on the current access. This progressively removes locks 
from the lockset that are only incidentally locked during some access to the data.  If 
the lockset ever becomes empty an error is reported because no single lock protects 
all access to the data.  A pseudo-code representation of the Eraser algorithm is 
depicted below. 



 

 

 

 

Let locks_held(t) be the set of locks held by thread t. 
Let update_use(d,a,t) update the marking of data d 
    by thread t using access a as shown in Figure 4.  
For each data item d: 
    mark[d] := NEW 
    lockset[d] := { all locks } 
 
On each access a (read or write) to d, by a thread t: 
    update_use(d,a,t) 
    if mark[d] in { SHARED, SHARED-MODIFIED } 
        lockset[d] := lockset[d] ∩ locks_held(t) 
    if mark[d] = SHARED-MODIFIED and, 
       lockset[d] = { }, then report error 

 
Thread Segment Extension to Eraser Algorithm.   Not all data shared between 
threads without the use of a lock is an application error.  There are types of indirect 
synchronization that may eliminate the need for explicit locks.  In particular, a very 
common paradigm is for the initial thread to allocate and initialize some data, create 
worker threads to perform some transformations on this data, and then after the 
threads have all completed, display the result.  The original Eraser algorithm was 
extended to reduce the number of false reports due to this type of implicit 
synchronization, by introducing the concept of thread segment.  A thread segment 
delineates time in addition to just thread identity.  By utilizing the thread segment 
identifiers in the algorithm instead of simply using the thread identity, we can 
distinguish accesses that cannot happen concurrently.  No thread segment spans 
beyond the creation of a new thread, or a join.  When a parent thread creates a new 
child thread, the parent’s thread segment id is updated, and the child’s thread segment 
id is assigned.  Similarly, after a join operation, the parent’s thread segment id is 
updated (the child no longer exists).  Each running thread is represented as a leaf in 
the graph.  Figure 5 shows how thread segments are assigned over time. 
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Fig. 5. A single thread may have many thread segments over time.  Thread A creates Thread B, 
and Thread B creates Thread C.  Thread C synchronizes with Thread A by waiting for it to 
terminate.  Similarly, Thread C then waits for Thread B to terminate.  This results in the seven 
thread segments T1 through T7. 

These thread segments are kept in a directed graph that indicates which thread 
segments cannot occur concurrent with each other.  As you can see from Figure 5, S1 
happens before TS2-TS7, TS3 happens before TS5-TS7, TS2 happens before TS6 
and TS7, and so forth.  The modification of the Eraser algorithm to incorporate thread 
segments is relatively straightforward.   

 
1. When data d is marked as EXCLUSIVE, associate it with the thread segment id of 

the current thread instead of the thread id. 
2. If data d is marked as EXCLUSIVE to thread segment TSi, and is being touched by 

TSj (where i ≠ j), and TSi happens before TSj in the graph, then instead of moving 
the data to one of the shared states, associate d with TS j.    The marking remains 
EXCLUSIVE. 

 
This extension allows exclusive-use data to be “passed” from parent thread to child 
thread (and back) as long as the thread segments involved in the access cannot be 
concurrent due to the known points of thread creation and termination (as determined 
by the thread segment graph).  If the two thread segments are potentially concurrent, 
then the data is marked as either SHARED or SHARED-MODIFIED as appropriate 
and the standard checking is applied. 
 
Implementation Details .  The basic technique used to detect this type of error 
involves monitoring every load and store of all global and heap data in the 
application.  The code for monitoring memory access is injected into an existing 
application executable using a binary code modification tool called Atom [4].  
Information is maintained for each data address in a corresponding shadow address.  
Since access to the state information is very frequent, the shadow data is efficiently 
determined by a table lookup and offset calculation.  The table lookup is kept small 
by using large shadow segments (16MB) to minimize search time on the table.  This 
table lookup was added for improved robustness necessary in a product, even at the 



 

 

 

 

cost of some additional execution overhead.  The data maintained in the shadow area 
is listed below. 

 
− Type of sharing  (as listed in Table 1) 
− Set of locks protecting this data, if marked SHARED or SHARED-MODIFIED. 
− Owner thread segment, if marked EXCLUSIVE 

 
Protecting Unsafe Libraries and Functions.  In addition to detecting 
unsynchronized access to shared data, Visual Threads also allows the definition of 
application-specific rules that identify particular libraries or functions that are known 
not to be thread safe.  There are many extensively used libraries (such as user-
interface toolkits) that are not thread safe.  Typically, the programmer must surround 
any call to such a library with a lock to prevent other threads from calling into the 
library concurrently.  Programmers can then identify this requirement, and have 
Visual Threads verify that the application has been coded properly.   

4.3 Other Programming Error Rules 

The remaining error-detection rules validate various facets of using the POSIX 
threads programming interface correctly.  For the most part, the rules listed below are 
simply checks that are performed during state changes in the model maintained by 
Visual Threads.  

 
− Detect attempts to relock a non-recursive mutex. 
− Detect attempts to unlock a lock the thread did not previously lock. 
− Detect when a condition variable is associated with more than one mutex. 
− Detect when mixed scheduling policy is used. 
− Detect attempts to wait on a condition variable when the mutex is not locked. 
− Detect when a thread terminates while holding a mutex or read-write lock. 
− Detect when a thread terminates without deleting a stack-local threads object. 
− Detect when a terminated thread is neither joined nor detached. 
− Detect when stack utilization of a thread exceeds 99%. 
− Detect when the threads programming interface returns an error value that 

represents a failure that must be handled. 
 

While many of these errors may seem minor, often they have indeterminate effects 
upon the application state.  This can lead to unexpected behavior at some later time, 
which can be extremely difficult to debug due to the distance from the original 
problem. 

4.4 Detecting Errors by Observation and Heuristics 

While this paper has focused primarily on the program validation aspects, Visual 
Threads also provides visualization of the state of thread and synchronization objects 



 

 

 

 

in the application, as well as statistical analysis of overall execution behavior.  Unlike 
the relatively absolute errors detected by rule checking, some errors are recognized 
only by the degree of their severity.  For this class of errors, Visual Threads provides 
a heuristic-based summary of the program execution as shown in Figure 6.  The types 
of analysis reported in this manner are listed below. 

 
− Locks with high levels of contention 
− Locks with granularity that is too coarse 
− Level of processor utilization 
− Mutex with the highest percentage of contended locks 
− Mutex with the highest total wait time 
− Mutex with the highest number of concurrent waiters  
− Inefficient use of mutex attributes 

 



 

 

 

 

Fig. 6. The Analysis Summary is automatically displayed when the program completes.  In 
addition to summarizing errors, it generates observations about the program execution. 

Often such analysis is helpful in performance tuning, but it can also highlight 
coding or design errors that result in high lock contention, poor lock granularity, or 
poor processor utilization. 

5 Summary 

Visual Threads provides extensive automatic runtime validation of a running 
multithreaded application.  Through pragmatic selection of targeted analysis and 
efficient algorithms, even the most complex application domain can benefit from 
automated program checking.  While far from exhaustively validating the overall 
correctness of a multithreaded application, it can be invaluable in detecting 
programming errors that may lead to program instability and unexpected failures. 

Visual Threads is available on Compaq’s OpenVMS and Tru64™ UNIX® 
operating systems which run on the 64-bit Alpha microprocessor.  It is able to analyze 
multithreaded programs whether written in C, C++, Fortran, or the Java programming 
language. 
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